K(t)=1.6+5t-4.9t^2

Simple and best practice solution for K(t)=1.6+5t-4.9t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for K(t)=1.6+5t-4.9t^2 equation:



(K)=1.6+5K-4.9K^2
We move all terms to the left:
(K)-(1.6+5K-4.9K^2)=0
We get rid of parentheses
4.9K^2-5K+K-1.6=0
We add all the numbers together, and all the variables
4.9K^2-4K-1.6=0
a = 4.9; b = -4; c = -1.6;
Δ = b2-4ac
Δ = -42-4·4.9·(-1.6)
Δ = 47.36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$K_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$K_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$K_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-\sqrt{47.36}}{2*4.9}=\frac{4-\sqrt{47.36}}{9.8} $
$K_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+\sqrt{47.36}}{2*4.9}=\frac{4+\sqrt{47.36}}{9.8} $

See similar equations:

| 1.4-0.4z=0.9 | | 2n-11+4n=31 | | 2k^2=33+5k | | 10(y-1.5)=24-3y | | 4x^2-31=41 | | 21x-20=20x-21 | | 1/2x-3=7-3/4 | | 16-2n=3n+41 | | 2(1+,5x)=3 | | x/6+1=4/3 | | 4x-5+x=5x-4+x | | 1/3(x=2/3)=1/6(x-4) | | 0*(8*3)=(0*8)*n | | 3x+2+2x=7x | | 6(5x-5)=300 | | -6x+45=27 | | 3a^2+27a+24=0 | | 50-2x=120 | | 35+.15x=61.85 | | 124=64x | | 78=6(z+11) | | 3p+4(p+11)=7 | | 43-p=56 | | 2(5+4x)=74 | | 5(f-87)+44=39 | | 5x+15=-5x+125 | | 2(s+12)=56 | | 100=9(m+1)+1 | | 2(h+1)-1=7 | | 2(h+1)−1=7 | | Q(q-8)=23 | | x+3=5+x+1 |

Equations solver categories